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ABSTRACT

Statistical modeling of extreme rainfall is essential since the results can often facilitate civil engineers and planners to 
estimate the ability of building structures to survive under the utmost extreme conditions. Data comprising of annual 
maximum series (AMS) of extreme rainfall in Alor Setar were fitted to Generalized Extreme Value (GEV) distribution using 
method of maximum likelihood (ML) and Bayesian Markov Chain Monte Carlo (MCMC) simulations. The weakness of ML 
method in handling small sample is hoped to be tackled by means of Bayesian MCMC simulations in this study. In order 
to obtain the posterior densities, non-informative and independent priors were employed. Performances of parameter 
estimations were verified by conducting several goodness-of-fit tests. The results showed that Bayesian MCMC method 
was slightly better than ML method in estimating GEV parameters. 

Keywords: Annual maximum series; Bayesian MCMC; extreme rainfall analysis; extreme value distribution; generalized 
maximum likelihood

ABSTRAK

Pemodelan statistik bagi hujan melampau amat penting, memandangkan hasil dapatannya mampu membantu jurutera 
awam dan pakar runding untuk menjangka kebolehan struktur sesebuah bangunan untuk bertahan dalam situasi yang 
paling melampau. Data daripada siri maksimum tahunan (AMS) disuaikan menggunakan taburan nilai melampau teritlak 
(GEV) dengan menggunakan kaedah kebolehjadian maksimum (ML) dan kaedah simulasi Markov Chain Monte Carlo 
(MCMC) Bayes. Kelemahan kaedah ML dalam pengendalian sampel kecil diharap dapat diatasi dengan kaedah simulasi 
MCMC Bayes. Bagi mendapatkan taburan posterior, taburan prior tak-bermaklumat dan tak-bersandar digunakan. Padanan 
bagi parameter yang dicadangkan disahkan dengan menjalankan beberapa ujian kebagusan penyuaian (GOF). Hasilnya, 
didapati kaedah MCMC Bayes memberikan anggaran yang sedikit lebih baik berbanding kaedah ML bagi menganggar 
nilai-nilai parameter taburan GEV.

Kata kunci: Kaedah kebolehjadian maksimum; kajian hujan melampau; MCMC Bayes; siri maksimum tahunan; taburan 
nilai melampau teritlak

INTRODUCTION

Extreme rainfall event is often associated with climate 
change, which may be followed by a series of natural 
disasters such as flash floods and landslides. According to 
United Nations Framework on Climate Change (UNFCCC), 
climate change in Asia will affect water resources, 
agriculture and food security, ecosystems and biodiversity, 
human health and coastal zones. Malaysia is located in 
tropical climate zone; hence extreme rainfall is expected to 
take place regularly every year resulting from local tropical 
wet season. According to Department of Irrigation and 
Drainage (DID) Malaysia, it is estimated that about 29,720 
km2 or 9% of the total land area of Malaysia is prone to 
flood, affecting some 4.9 million people or 21% of the 
population. For a developing country like Malaysia, natural 
disasters will definitely cripple the country’s productivity. 
Alam et al. (2011) found that changes in climatic factors 

have negative impacts on productivity of paddy cultivation 
in Malaysia. 
	I t is undeniable that any extreme environmental event 
is unpredictable. Nevertheless, the impact of extreme 
rainfall events may be reduced by preventive measures 
based on the results from statistical analysis of extreme 
rainfall data, as suggested by Zin et al. (2009a). The main 
objective of extreme rainfall modeling was to estimate the 
values of return levels that might occur for the next 10, 50 
or maybe 100 years, based on 10-year or 30-year history.
	 The two approaches widely used in data selection 
for extreme rainfall are annual maximum series (AMS) 
approach and peak over thresholds series (POT) approach 
(also known as partial duration series, PDS). The AMS 
method involves selection of the highest value of rainfall 
observed each year, whereas POT approach involves 
choosing observations that exceed a certain level of pre-
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determine threshold value (Zin et al. 2009a). POT method 
was developed in order to solve the data-wastage problems 
in AMS approach. However, according to Madsen et al. 
(1997) AMS is preferable since the procedure in selecting 
the suitable threshold in POT method sometimes can be 
complicated. 
	 Extreme rainfall data need to be modeled by suitable 
statistical distributions that give the best inferences of the 
behavior of extreme rainfall. Examples of distributions 
often is able to used in extreme rainfall analysis are 
Gumbel, GEV, generalized Pareto distribution (GPD), 
generalized logistic distribution (GLO) and lognormal 
distribution. Several studies conducted on selecting the 
best-fit distribution for extreme rainfall data in Malaysia 
are by: Zalina et al. (2002) which suggested that GEV 
is the most suitable distribution for annual maximum 
rainfall in Peninsular Malaysia, Zin et al. (2009a) which 
concluded that annual extreme and partial duration series in 
Peninsular Malaysia are well fitted by GEV and GPD model 
respectively, Zin and Jemain (2009b) which found that 
majority of 50 rain gauge stations in Peninsular Malaysia 
followed GLO and Shabri et al. (2011) which identified 
that GLO and GEV are two most suitable distributions for 
representing statistical properties of extreme rainfall in 
Selangor.
	 There are several methods that can be used in parameter 
estimation for extreme value models such as graphical-
based, moment-based, order statistics, likelihood-based 
and simulation-based. Moment-based methods were the 
most preferable methods used in previous studies on 
extreme rainfall in Malaysia such as L-moment method 
(Shabri et al. 2011; Zalina et al. 2002; Zin et al. 2009a; 
Zin & Jemain 2009b), LQ-moment method (Zin & Jemain 
2009b) and TL-moment method (Shabri et al. 2011). The 
reason was mainly due to the problem of scarcity data; 
common when dealing with extreme value analysis for this 
reason. Hosking (1990) and Hosking et al. (1985) affirmed 
that parameter estimation via moment-based techniques 
may produce a better estimation than ML. In contrast, 
Coles (2001) considered ML as the best method because 
of its all-round utility and adaptability to model-change. 
This means that, the underlying methodology is essentially 
unchanged even though the estimating equation is modified. 
However, a study by Smith (1985) showed that asymptotic 
properties associated with ML estimator are violated when 
estimating GEV parameters due to the assumption of a 
restricted parameter space. In addition, Rao and Hamed 
(2000) mentioned that ML method was incapable to obtain 
estimates with small sample. As an alternative, Bayesian 
approach can be used in estimating the parameters of GEV. 
Despite this approach is increasingly popular in many areas 
of application, a challenge when adopting this approach 
is the computational difficulties. This may be solved by 
the application of Markov chain Monte Carlo (MCMC) 
simulations (Coles 2001).
	I n order to produce good estimates, a long-record of 
rainfall data is required. It is generally held that a quantile 

of return period T can be reliably estimated from a data 
record of length n only if T ≤ n (Hosking & Wallis 1997). 
Although extreme data are limited in nature as mentioned 
earlier, Bayesian inferences have the ability to incorporate 
other source of information via prior distribution. It is also 
considered as a complete inference (Coles 2001) since the 
accuracy of an inference can be derived from the posterior 
distribution. Moreover, Bayesian analysis is not dependent 
on regularity assumptions required by asymptotic theory of 
ML. Previous studies on Bayesian extreme rainfall analysis 
using MCMC were conducted by Coles (2001), Coles and 
Tawn (1996), Coles et al. (2003), Fawcett and Walshaw 
(2008) and Smith (2005).
	 The objective of this study was to evaluate the 
performances of Bayesian MCMC and ML methods in 
estimating parameters of GEV parameters. We focused on 
GEV distribution only in representing the distribution of 
annual maximum daily rainfall in Alor Setar. Performance 
for both methods were then verified by conducting several 
goodness-of-fit tests.
	 This paper is organized as follows. We begin with 
description of the data used in this study. Next, the 
probability distribution, statistical methods and goodness-
of-fit tests involved in this study will be explained. Later 
on, the results of our analysis will be presented. Conclusion 
and a short discussion regarding plan for future works will 
be discussed in the final section.

DATA

In the preliminary phase in applying Bayesian approach in 
modeling extreme rainfall data in Malaysia, daily rainfall 
data from Alor Setar rain gauge station is selected. Alor 
Setar is the state capital of Kedah, located at the north 
region of Peninsular Malaysia. DID Malaysia reported that 
a total area of 209 km2 of Kedah is flood prone area, which 
affected about 124,000 people. Known as the ‘rice bowl’ 
of Malaysia, Kedah has a long wet season resulting from 
the tropical monsoon climate. Zin et al. (2010) found that 
the annual pattern of extreme rainfall in the peninsula is 
highly influenced by the northeast monsoon. In this study, 
daily rainfall data of AMS from year 1970 to 2008 was 
obtained from the DID Malaysia. Figure 1 displays the 
scatter plot / time series plot of annual maximum amount 
of daily rainfall in Alor Setar recorded for the 38 years 
were considered.

METHOD

Probability Distribution

Some of the earliest applications of statistical theory of 
extreme were to hydrology and to closely related problems 
in climatology (Katz et al. 2002). According to Zin et al. 
(2009a), Gumbel distribution is commonly used among 
hydrologist in describing the AMS due to its simplicity 
form. Katz et al. (2002) stated that AMS can be modeled by 
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Gumbel or GEV distribution, whereas POT is suitable to be 
modeled by GPD distribution. Nevertheless, Koutsoyiannis 
(2003), Koutsoyiannis and Baloutsos (2000) revealed 
that Gumbel distribution may under estimate the largest 
extreme rainfall amount. Therefore, GEV distribution will 
be considered in this study.
	L et Z1, …, Zn denote independent annual maximum 
rainfall observations having GEV probability density 
function:

	 f (z⎢μ,σ,ξ) = 	  (1)

where μ is the location, σ is the scale and ξ is the shape 
parameters with parameter space –∞ < μ < ∞, σ > 0  and 
–∞ < ξ < ∞ respectively. The estimate of extreme quantile, 
of annual maximum is:

	 	 (2)

where qr is the return level associated with the 1/r-year 
return period. In order to obtain the parameter values, ML 
and Bayesian MCMC simulations methods will be used.

Method

In this paper, the discussion will be focused more on 
the Bayesian MCMC method instead of ML method. For 
reference on ML method, Rao and Hamed (2000) is a 
great source for describing ML method in estimating GEV 
parameters. As mentioned earlier, adopting Bayesian 

approach can be quite tedious. Coles (2001) argued that the 
integration of conditional probabilities used in obtaining 
the posterior distribution for a complex model can be 
problematic, even with the aid of sophisticated numerical 
integration techniques. 
	F or the purpose of facilitating Bayesian calculation, 
MCMC aids in estimating parameters. Nevertheless, 
when applying MCMC a proposal distribution to generate 
simulated values need to be introduced. According to 
Nzoufras (2009), the choice of a proposal distribution 
is important as a poor choice will considerably delay 
convergence towards the equilibrium distribution 
(Roberts & Rosenthal 2001). The suitable acceptance 
rates in achieving high efficiency of MCMC simulation 
must be around 10 to 40%. Further information on MCMC 
simulation, may be found from Ntzoufras (2009) for 
application using WinBUGS, Gamerman and Lopes (2006) 
for a comprehensive introduction of MCMC simulation 
supported with R and WinBUGS computations and Gilks et 
al. (1996) for some theoretical background of MCMC and 
its implementations in medical statistics.
	I n this study, a combination of Gibbs sampling and 
Metropolis-Hasting scheme with random walk process is 
used to generate the distribution of interest. Therefore, the 
likelihood functions for Z1,…,Zn is given by:

	 L(μ,σ,ξ:Z1,…,Zm) = 	 (3) 

Thus, the density of posterior distribution is:

	 f(μ,σ,ξ⎢Z1,…,Zm) ∝ L(μ,σ,ξ:Z1,…,Zm) × g(μ,σ,ξ),
	 (4)
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Figure 1. Annual maximum rainfall at Alor Setar
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which can be represented as posterior ∝ prior × likelihood, 
where g is the prior distribution for GEV parameters. 
The prior distribution is used to represent a set of belief 
about the parameter of interest. In this study, the non-
informative prior (also known as diffuse, flat or vague 
priors) distributions are used to indicate that the significant 
information related to the extreme rainfall in Alor Setar 
is still unavailable at the moment. This approach is based 
on Coles et al. (2003) and Fawcett and Walshaw (2008) 
which used Port Pirie annual maximum sea-levels data and 
Smith (2005) on annual maximum rainfall data for south-
west England. The location, scale and shape parameters 
are assumed to be normally distributed with all means are 
equal to zero and variances equal to 1000, 100 and 10, 
respectively. Cases where informative priors were used in 
extreme rainfall data analysis for south-west England can 
be seen in Coles and Tawn (1996) and Smith (2005) with 
some modifications. 
	I n general, the aim of extreme rainfall analysis is 
to estimate the expected values of the extreme rainfall 
in the future i.e. the future return level. According to 
Coles (2003), Bayesian analysis is preferable due to the 
prediction of return level which is based on predictive 
distribution can be estimated easily. 
	L et y denotes the future observation with probability 
density function:

	 h(y⎢Z1,…,Zm) = ���f(y⎢μ,σ,ξ) f (μ,σ,ξ⎢Z1,…,Zm)dμdσdξ.
	 (5)

	 Based on Coles (2001), this can be obtained via MCMC 
given that the posterior density (Equation 4) has been 
estimated by simulation. It other words, the simulated 
values for the three parameters of GEV obtained from 
MCMC simulations will be used to generate the posterior 
predictive distribution. After the removal of ‘settling-in’ 
or ‘burn-in’ period of the MCMC simulations, the procedure 
will produce a sample θ1,…,θB and the estimate of m-year 
return level is:

	 Pr{Y ≤ qm⎢z1, …, zn) ≈  	 (6)

	F or more explanation on Bayesian predictive in 
extreme rainfall analysis, refer Coles (2001); Coles et al. 
(2003), Fawcett and Walshaw (2008) and Smith (2005). 
In this study, return values for 10, 25, 50 and 100-year are 
estimated using ML and Bayesian MCMC simulations. 

Goodness-Of-Fit Test

The performance between ML and Bayesian method in 
estimating GEV parameters and return levels of extreme 
rainfall in Alor Setar will be compared in this study. 
The selected GOF tests are relative root mean square 
error (RRMSE), relative absolute square error (RASE) and 
probability plot correlation coefficient (PPCC). The first 
two methods involve the assessment on the discrepancy 

between observed and estimated values under the assumed 
distribution while the third method involves measuring the 
correlation between the ordered values and the associated 
expected values (Zin et al. 2009a). The formulas are given 
as:

	 RRMSE = 		  (7)

	

	 RASE = 		  (8)

	 PPCC =  	 (9)

where xi:n  is the observed values for the ith order 
statistics of a random sample of size n,  

is the estimated quantile values associated with the ith 
Gringorton plotting position, F1. The smallest values of 
RRMSE and RASE will indicate the best method. In contrast, 
the value of PPCC that is closest to 1 will be considered as 
the best method for explaining the behaviour of extreme 
rainfall in Alor Setar. 

RESULTS

All simulated values for the three GEV parameters are found 
to converge within a parallel zone as shown in Figure 2, 
suggesting that no obvious tendencies or periodicities. 
As stated in the previous section, the variances for non-
informative priors are chosen to be large enough in order 
to create flat priors. The density plots are displayed in 
Figure 3 where it can be seen that the shapes of the three 
estimated posterior densities are almost symmetrical. The 
wide-spread distributions as shown in this figure resulted 
from the large variances defined in the non-informative 
prior distributions.
	F rom Table 1, it can be seen that the differences 
between GEV parameter estimation based on ML method 
and Bayesian MCMC simulation are very small. This is most 
probably due to the application of non-informative priors in 
the simulation. In particular, the estimated values for scale 
and shape parameters under ML are smaller than Bayesian. 
ML estimates could probably be a better method because 
the standard deviations of ML estimates for all parameters 
in this study are smaller than Bayesian. 
	 Based on RRMSE and RASE (Table 2), it can be 
concluded that Bayesian method is slightly better than ML 
since the small RRMSE and RASE values obtained indicate 
small difference between the observed and estimated 



	 	 1407

po
se

te
rio

r d
en

si
ty

po
se

te
rio

r d
en

si
ty

po
se

te
rio

r d
en

si
ty

(a)

(b)

(c)

Figure 3. Posterior densities plots for (a) location, (b) scale and (c) shape of GEV parameters

Figure 2. Trace plots for (a) location, (b) log scale and (c) shape parameters 
of GEV distribution for 10000 iterations
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values. Supported with PPCC test, the Bayesian method 
can be considered as the better method in estimating GEV 
parameters for Alor Setar.
	 All the posterior densities of the return levels given 
in Figure 4 are positively skewed. For this reason, it is 
advisable to use the posterior medians rather than posterior 
means. The return levels for four return periods are given 
in Table 3. All the return levels estimates of ML are smaller 
than the Bayesian estimates. 

DISCUSSION AND CONCLUSION

The main objective of conducting this preliminary study 
was to verify whether the performance of parameter 
estimation can be improved when adopting Bayesian 
approach. ML and Bayesian MCMC are eventually closely 
related since the starting point as both method involved 
with likelihood function. As mentioned by Coles and 
Dixon (1999), the likelihood functions can be constructed 

Table 1. Estimates of GEV parameters

Method of estimation Parameter
Location, μ Scale, σ Shape, ξ 

ML mean
(std. dev.)

93.6104319
(5.2178781)

29.3171622
(3.7090043)

-.2058092
(0.1069889)

Bayesian mean
(std. dev.)

92.7982
(5.379553)

30.58968
(3.946326)

-.1610848
(0.1127518)

Table 2. Comparison of performance between Maximum Likelihood and Bayesian methods

Method of estimation Goodness-of-fit test
RRMSE RASE PPCC

ML 0.1648584 1.306513 0.9300822
Bayesian 0.1461849 1.158966 0.9423074

(a) (b)

(c) (d)

10-year return level 25-year return level

50-year return level 100-year return level
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Figure 4. Posterior densities plots for (a) 10-year, (b) 25-year, (c) 50-year and 
(d) 100-year return levels (mm)
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for complex modeling situations which can handle issues 
such as non-stationarity, covariates effects and regression 
modeling. Even though ML method has many advantages, 
its poor performance when dealing with small samples can 
be improved by conducting Bayesian MCMC. 
	I n conclusion, Bayesian MCMC was a better method 
in describing the annual maximum rainfall of Alor Setar. 
The parameter estimation of GEV distribution was slightly 
better when using Bayesian compared to ML method. The 
small differences were due to the non-informative prior 
used in this study. Judiciously, Bayesian analysis did not 
give a radically different interpretation of the data, but 
provides a more convenient and direct way of managing 
and expressing uncertainties (Coles et al. 2003). It also 
has the ability to comprise other source of information 
in order to reduce the amount of uncertainties in the 
model. Furthermore, the prediction of future return levels 
of extreme rainfall can be derived easily by using the 
Bayesian predictive distribution. 
	 Some issues that would be considered for future 
works in this study are the reliability of the model with 
the inclusion of expert knowledge for the usage of 
informative priors, several diagnostics tests in order to 
get high-efficiency of MCMC simulations and a Bayesian 
spatial extreme rainfall analysis constructed for Kedah or 
perhaps the northern region of Peninsular Malaysia. 
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